If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=16H^2+54H+7
We move all terms to the left:
(H)-(16H^2+54H+7)=0
We get rid of parentheses
-16H^2+H-54H-7=0
We add all the numbers together, and all the variables
-16H^2-53H-7=0
a = -16; b = -53; c = -7;
Δ = b2-4ac
Δ = -532-4·(-16)·(-7)
Δ = 2361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-53)-\sqrt{2361}}{2*-16}=\frac{53-\sqrt{2361}}{-32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-53)+\sqrt{2361}}{2*-16}=\frac{53+\sqrt{2361}}{-32} $
| 15x-5+3x=6-4x+3 | | 5(2x-10)=49 | | 3x+13=-2x+68 | | 4-3y=123 | | -3(v-5)=18 | | 2a/3+.8/9=4 | | .25(2y-4)=1.5 | | 64*4^3x=16 | | 38=2(4m+7) | | 4x-(8-2x)=9x-11 | | 2y-10-10=10-3y | | −3x−14x−7=45−12x+3 | | 2x+3=−3 | | 3-(x+4)=10 | | x+(x/2)=76 | | 180=65+8x-7 | | 15s-38=6s+34 | | -8x-5=-6x-15 | | 180=55+8x-7 | | −3x−7(2x−1)=45−3(4x+1) | | –x–8=–17 | | 5/24r=145/144 | | 2/5(x-15)+1/3=4/3x-1/3 | | 180=8x-7-65 | | 4(2x+1)=+3(2x-5) | | 14d-61d=14 | | 180=8x-7+65 | | 15s-38=65+34 | | -6(b+1)=-8(b-1) | | 180=8x-7+55 | | 33=-3x-3(4x+19) | | (t+41)+(t+32)+(3t-31)=360 |